Meta Learning and Software Effort Estimation
© 2020 IEEE. Studies in software effort estimation typically seek to discover the best estimator which will perform best in any circumstances. However, the present study opposes that such a single best estimator may not exist, and rather suggests to seek the solution to determine the most suitable e...
Saved in:
主要作者: | Passakorn Phannachitta |
---|---|
格式: | Conference Proceeding |
出版: |
2020
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85085608898&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/70136 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Robust comparison of similarity measures in analogy based software effort estimation
由: Passakorn Phannachitta
出版: (2018) -
Model-based software effort estimation - A robust comparison of 14 algorithms widely used in the data science community
由: Passakorn Phannachitta, et al.
出版: (2019) -
The Software Engineering Position Mapping from Personality Traits
由: Chartchai Doungsa-Ard, et al.
出版: (2020) -
A Software Process Gap Analysis Methodology for Very Small Entity
由: Kittitouch Suteeca
出版: (2020) -
The Significant Effects of Data Sampling Approaches on Software Defect Prioritization and Classification
由: Kwabena Ebo Bennin, et al.
出版: (2018)