Antituberculosis activity of the antimalaria cytochrome bcc oxidase inhibitor SCR0911

The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycoba...

Full description

Saved in:
Bibliographic Details
Main Authors: Chong, Sherilyn Shi Min, Manimekalai, Malathy Sony Subramanian, Sarathy, Jickky Palmae, Williams, Zoe C., Harold, Liam K., Cook, Gregory M., Dick, Thomas, Pethe, Kevin, Bates, Roderick Wayland, Grüber, Gerhard
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/138832
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The ability to respire and generate adenosine triphosphate (ATP) is essential for the physiology, persistence, and pathogenicity of Mycobacterium tuberculosis, which causes tuberculosis. By employing a lead repurposing strategy, the malarial cytochrome bc1 inhibitor SCR0911 was tested against mycobacteria. Docking studies were carried out to reveal potential binding and to understand the binding interactions with the target, cytochrome bcc. Whole-cell-based and in vitro assays demonstrated the potency of SCR0911 by inhibiting cell growth and ATP synthesis in both the fast- and slow-growing M. smegmatis and M. bovis bacillus Calmette–Guérin, respectively. The variety of biochemical assays and the use of a cytochrome bcc deficient mutant strain validated the cytochrome bcc oxidase as the direct target of the drug. The data demonstrate the broad-spectrum activity of SCR0911 and open the door for structure–activity relationship studies to improve the potency of new mycobacteria specific SCR0911 analogues.