3D path planning and real-time collision resolution of multirotor drone operations in complex urban low-altitude airspace

Drones have been greatly developed to facilitate the progress of various industries. The safe operation of drones in the urban airspace is critical to ensure a reliable and high-efficient urban air traffic system. This work presents a fusion scheme to achieve autonomous drone collision-free path...

全面介紹

Saved in:
書目詳細資料
Main Authors: Zhang, Na, Zhang, Mingcheng, Low, Kin Huat
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/151289
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Drones have been greatly developed to facilitate the progress of various industries. The safe operation of drones in the urban airspace is critical to ensure a reliable and high-efficient urban air traffic system. This work presents a fusion scheme to achieve autonomous drone collision-free path planning considering static obstacles and dynamic threats detected. Firstly, a 3D voxel jump point search (JPS) based path planning model is developed to generate the static collision-free reference path. With the optimization, the reference path is then de-diagonalized, recon- structed, and smoothed to obtain the desired path. Subsequently, a local collision resolution method is proposed to avoid near mid-air collision of the dynamic threats. The method is based on the Markov decision process (MDP) to implement real-time dynamic collision avoidance. Simu- lations are conducted to verify the performance of the proposed model. The simulation results demonstrate that the proposed model is effective to achieve the autonomous path planning and real-time collision resolution of multirotor drones.