FPS-Net: a convolutional fusion network for large-scale LiDAR point cloud segmentation
Scene understanding based on LiDAR point cloud is an essential task for autonomous cars to drive safely, which often employs spherical projection to map 3D point cloud into multi-channel 2D images for semantic segmentation. Most existing methods simply stack different point attributes/modalities...
Saved in:
Main Authors: | Xiao, Aoran, Yang, Xiaofei, Lu, Shijian, Guan, Dayan, Huang, Jiaxing |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/162039 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
TSG-Seg: temporal-selective guidance for semi-supervised semantic segmentation of 3D LiDAR point clouds
由: Xuan, Weihao, et al.
出版: (2024) -
Integration of tree database derived from satellite imagery and LiDAR point cloud data
由: Liew, S.C., et al.
出版: (2021) -
Real-time LiDAR point cloud compression using bi-directional prediction and range-adaptive floating-point coding
由: Zhao, Lili, et al.
出版: (2022) -
BEACon : a boundary embedded attentional convolution network for point cloud instance segmentation
由: Liu, Tianrui, et al.
出版: (2021) -
Automating parameter learning for classifying terrestrial LiDAR point cloud using 2D land cover maps
由: Feng, C.-C, et al.
出版: (2020)