Spatiotemporal capsule neural network for vehicle trajectory prediction
Through advancement of the Vehicle-to-Everything (V2X) network, road safety, energy consumption, and traffic efficiency can be significantly improved. An accurate vehicle trajectory prediction benefits communication traffic management and network resource allocation for the real-time application of...
Saved in:
Main Authors: | Qin, Yan, Guan, Yong Liang, Yuen, Chau |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/166621 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
A Layered Hidden Markov Model for predicting human trajectories in a multi-floor building
由: LI, Qian, et al.
出版: (2015) -
Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction
由: Mo, Xiaoyu, et al.
出版: (2024) -
TRAJECTORY GENERATION AND TRACKING FOR AUTONOMOUS DRIVING IN URBAN ENVIRONMENT
由: HANS ANDERSEN
出版: (2018) -
Collusion set detection using a quasi hidden Markov model
由: Wu, Z., et al.
出版: (2014) -
Calibrating Large Scale Vehicle Trajectory Data
由: Liu, Siyuan, et al.
出版: (2012)