SLAM in adverse weathers: robust modality and denoised conventional modality
This dissertation aims to alleviate negative influence that adverse weathers have on SLAM system by applying filters on traditional modality and adopting more robust modality, respectively. For robust modality, the modal fusion of thermal camera, LiDAR and IMU is found out to be the most robust and...
Saved in:
主要作者: | Mo, Qingyu |
---|---|
其他作者: | Wang Dan Wei |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/168368 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Robust visual SLAM for autonomous vehicles in challenging environments
由: Ji, Tete
出版: (2022) -
Sensor fusion for object detection under adverse weather
由: Soh, Brandon Jian Zheng
出版: (2023) -
Extending Bayesian RFS SLAM to multi-vehicle SLAM
由: Moratuwage, Diluka, et al.
出版: (2013) -
Robust 3D reconstruction in adverse condition
由: Xiao, Renxiang
出版: (2022) -
Denoising ECG signals
由: Oh, Melissa Kai Zhen
出版: (2018)