Efficient FPGA-based sparse matrix-vector multiplication with data reuse-aware compression
Sparse matrix-vector multiplication (SpMV) on FPGAs has gained much attention. The performance of SpMV is mainly determined by the number of multiplications between non-zero matrix elements and the corresponding vector values per cycle. On the one side, the off-chip memory bandwidth limits the numbe...
Saved in:
Main Authors: | Li, Shiqing, Liu, Di, Liu, Weichen |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/169152 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
An efficient gustavson-based sparse matrix-matrix multiplication accelerator on embedded FPGAs
由: Li, Shiqing, et al.
出版: (2023) -
Accelerating gustavson-based SpMM on embedded FPGAs with element-wise parallelism and access pattern-aware caches
由: Li, Shiqing, et al.
出版: (2023) -
Optimized data reuse via reordering for sparse matrix-vector multiplication on FPGAs
由: Li, Shiqing, et al.
出版: (2022) -
Solve Ax=B on an FPGA
由: Ling, Jun Han
出版: (2024) -
Looting the LUTs : FPGA optimization of AES and AES-like ciphers for authenticated encryption
由: Khairallah, Mustafa, et al.
出版: (2020)