Hardware acceleration for non-linear layers of transformer networks on RISC-V CPU
This paper explores the utilization of hardware acceleration techniques for the non-linear layers in Transformer networks, specifically within the context of RISC-V CPU archi- tectures. The growing complexity of Transformer-based models, highlighted by their significant computational demands, unders...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/177093 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | This paper explores the utilization of hardware acceleration techniques for the non-linear layers in Transformer networks, specifically within the context of RISC-V CPU archi- tectures. The growing complexity of Transformer-based models, highlighted by their significant computational demands, underscores the need for optimized computing solu- tions. Despite the widespread application of these models in generating human-like text and other multi-modal AI tasks, their deployment is often hampered by the high volume of Floating Point Operations (FLOPs) required, particularly for activation functions like GELU, Softmax, and SiLU. RISC-V, an open Instruction Set Architecture (ISA), offers a promising avenue for addressing these challenges due to its customizable and royalty-free nature. This paper investigates the potential of RISC-V CPUs to provide efficient hard- ware acceleration for the computationally intensive layers of Transformer networks. By focusing on non-linear layers, we aim to enhance the overall execution speed and energy efficiency of these models . |
---|