UV Raman studies of channel stress in transistors with embedded SiGe source and drain
Channel strain engineering is important for improving the performance of metal-oxide-semiconductor (MOS) devices today. UV Raman spectroscopy is commonly used for stress measurements in microelectronics applications, but its use in channel stress studies of advanced transistors in sub-100nm nodes is...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/50712 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-50712 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-507122023-02-28T23:48:23Z UV Raman studies of channel stress in transistors with embedded SiGe source and drain Wong, Choun Pei See Kai Hung Alex Shen Zexiang School of Physical and Mathematical Sciences DRNTU::Humanities::Philosophy Channel strain engineering is important for improving the performance of metal-oxide-semiconductor (MOS) devices today. UV Raman spectroscopy is commonly used for stress measurements in microelectronics applications, but its use in channel stress studies of advanced transistors in sub-100nm nodes is relatively unexplored. This thesis presents a low-cost method for rapid characterization of channel stress of 45nm-node transistors with embedded SiGe source and drain, using UV Raman spectroscopy. Results of using a micro-meter sized laser beam to study the channel stress of repeating transistors are presented and discussed. The effects of changing the gate pitch as well as the impact of implantation and annealing on the channel stress are investigated. Simulation results are also included to provide insight into the interaction of light with the structures studied. The measurement approach presented in this thesis can be an attractive alternative to other approaches that require more time and resources to carry out. DOCTOR OF PHILOSOPHY (SPMS) 2012-09-11T04:55:50Z 2012-09-11T04:55:50Z 2012 2012 Thesis Wong, C. P. (2012). UV Raman studies of channel stress in transistors with embedded SiGe source and drain. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/50712 10.32657/10356/50712 en 160 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Humanities::Philosophy |
spellingShingle |
DRNTU::Humanities::Philosophy Wong, Choun Pei UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
description |
Channel strain engineering is important for improving the performance of metal-oxide-semiconductor (MOS) devices today. UV Raman spectroscopy is commonly used for stress measurements in microelectronics applications, but its use in channel stress studies of advanced transistors in sub-100nm nodes is relatively unexplored. This thesis presents a low-cost method for rapid characterization of channel stress of 45nm-node transistors with embedded SiGe source and drain, using UV Raman spectroscopy. Results of using a micro-meter sized laser beam to study the channel stress of repeating transistors are presented and discussed. The effects of changing the gate pitch as well as the impact of implantation and annealing on the channel stress are investigated. Simulation results are also included to provide insight into the interaction of light with the structures studied. The measurement approach presented in this thesis can be an attractive alternative to other approaches that require more time and resources to carry out. |
author2 |
See Kai Hung Alex |
author_facet |
See Kai Hung Alex Wong, Choun Pei |
format |
Theses and Dissertations |
author |
Wong, Choun Pei |
author_sort |
Wong, Choun Pei |
title |
UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
title_short |
UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
title_full |
UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
title_fullStr |
UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
title_full_unstemmed |
UV Raman studies of channel stress in transistors with embedded SiGe source and drain |
title_sort |
uv raman studies of channel stress in transistors with embedded sige source and drain |
publishDate |
2012 |
url |
https://hdl.handle.net/10356/50712 |
_version_ |
1759856123766112256 |