Reservoir effect and the role of low current density regions on electromigration lifetimes in copper interconnects

Electromigration (EM) in copper dual-damascene interconnects with extensions(also described as overhang regions or reservoirs) in the upper metal (M2) were investigated. It was found that as the extension length increases from 0 to 60 nm, the median-time-to-failure increased from 50 to 140 h, repres...

全面介紹

Saved in:
書目詳細資料
Main Authors: Shao, W., Chen, Z., Tu, K. N., Gusak, A. M., Gan, Zhenghao, Mhaisalkar, Subodh Gautam, Li, Hong Yu
其他作者: School of Materials Science & Engineering
格式: Article
語言:English
出版: 2012
主題:
在線閱讀:https://hdl.handle.net/10356/94915
http://hdl.handle.net/10220/7699
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Electromigration (EM) in copper dual-damascene interconnects with extensions(also described as overhang regions or reservoirs) in the upper metal (M2) were investigated. It was found that as the extension length increases from 0 to 60 nm, the median-time-to-failure increased from 50 to 140 h, representing a ∼200% improvement in lifetimes. However, further increment of the extension length from 60 to 120 nm did not result in any significant improvement in EM lifetimes. Based on calculations of current densities in the reservoir regions and recently reported nucleation, void movement, and agglomeration-based EM phenomena, it is proposed that there is a critical extension length beyond which increasing extension lengths will not lead to longer EM lifetimes.