Interface strain study of thin Lu2O3/Si using HRBS
The interface of thin Lu2O3 on silicon has been studied using high-resolution RBS (HRBS) for samples annealed at different temperatures. Thin rare earth metal oxides are of interest as candidates for next generation transistor gate dielectrics, due to their high-k values allowing for equivalent oxid...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/97350 http://hdl.handle.net/10220/10513 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | The interface of thin Lu2O3 on silicon has been studied using high-resolution RBS (HRBS) for samples annealed at different temperatures. Thin rare earth metal oxides are of interest as candidates for next generation transistor gate dielectrics, due to their high-k values allowing for equivalent oxide thickness (EOT) of less than 1 nm. Among them, Lu2O3 has been found to have the highest lattice energy and largest band gap, making it a good candidate for an alternative high-k gate dielectric. HRBS depth profiling results have shown the existence of a thin (∼2 nm) transitional silicate layer beneath the Lu2O3 films. The thicknesses of the Lu2O3 films were found to be ∼8 nm and the films were determined to be non-crystalline. Angular scans were performed across the [1 1 0] and [1 1 1] axis along planar channels, and clear shifts in the channeling minimum indicate the presence of Si lattice strain at the silicate/Si interface. |
---|