Kalman filtering with scheduled measurements - part I : estimation framework
This paper proposes an estimation framework under scheduled measurements for linear discrete-time stochastic systems. Both controllable and uncontrollable schedulers are considered. Under a controllable scheduler, only the normalized measurement innovation greater than a threshold will be communicat...
Saved in:
Main Authors: | You, Keyou, Xie, Lihua |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/97876 http://hdl.handle.net/10220/12321 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Diffusion Kalman filtering based on covariance intersection
由: Hu, Jinwen, et al.
出版: (2013) -
Bayesian filtering with unknown sensor measurement losses
由: Zhang, Jiaqi, et al.
出版: (2020) -
Gain-scheduled extended Kalman filter for nanosatellite attitude determination system
由: Pham, Minh Duc, et al.
出版: (2015) -
Secure dynamic state estimation by decomposing Kalman filter
由: Liu, Xinghua, et al.
出版: (2018) -
Indoor contaminant source estimation using a multiple model unscented Kalman filter
由: Yang, Rong, et al.
出版: (2014)