RBF network-aided adaptive unscented kalman filter for lithium-ion battery SOC estimation in electric vehicles
An accurate battery State of Charge (SOC) estimation is very important for electric vehicles. In this paper, a method is proposed to estimate the SOC of the lithium-ion batteries using radial basis function (RBF) networks and the adaptive unscented Kalman filter (AUKF). The RBF networks are to model...
محفوظ في:
المؤلفون الرئيسيون: | Liu, Zhitao, Wang, Youyi, Du, Jiani, Chen, Can |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/99709 http://hdl.handle.net/10220/12820 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Application of unscented kalman filter to state of charge estimation of lithium-ion battery
بواسطة: Joshua Chun-ken Dardchuntuk
منشور في: (2024) -
Temperature dependent state-of-charge estimation of lithium ion battery using dual spherical unscented Kalman filter
بواسطة: Aung, Htet, وآخرون
منشور في: (2016) -
Li-ion battery SOC estimation using EKF based on a model proposed by extreme learning machine
بواسطة: Du, Jiani, وآخرون
منشور في: (2013) -
State-of-charge estimation of lithium-ion battery using square root spherical unscented kalman filter (Sqrt-UKFST) in nanosatellite
بواسطة: Aung, Htet, وآخرون
منشور في: (2015) -
UNSCENTED KALMAN FILTER WITH NONLINEAR OBSERVER FOR AUTOMATED GUIDED VEHICLE LOCALIZATION
بواسطة: Adi Kuncara, Ivan