Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects
In recent years, through-wafer interconnects have emerged as a critical component required in the fabrication of the next generation of 3-D consumer electronic devices, which will have faster signal processing speed, ultra high I/Os density, smaller foot-print area, improved electrical and thermo-me...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2008
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/13519 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-13519 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-135192023-03-11T17:37:48Z Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects Dixit, Pradeep Miao Jianmin School of Mechanical and Aerospace Engineering DRNTU::Engineering::Manufacturing In recent years, through-wafer interconnects have emerged as a critical component required in the fabrication of the next generation of 3-D consumer electronic devices, which will have faster signal processing speed, ultra high I/Os density, smaller foot-print area, improved electrical and thermo-mechanical performance, system level reliability, and many more functionalities than their present ones. Fabrication of 3-D devices utilizes the concept of vertically stacking, wherein specific components like logic, memory, sensors, actuators, A/D converters, etc., are fabricated on separate wafers and then interconnected onto a single wafer-scaled package by through-wafer interconnects. Since, these devices are vertically interconnected, the effective interconnect path is relatively shorter; thus electrical signal takes lesser time in traveling from the bottom device to the top ones. This faster electrical signal propagation results in lower parasitic losses (RC delay), reduced power consumption, higher I/Os density, and improved system performance. DOCTOR OF PHILOSOPHY (MAE) 2008-09-02T07:04:24Z 2008-10-20T08:22:25Z 2008-09-02T07:04:24Z 2008-10-20T08:22:25Z 2008 2008 Thesis Dixit, P. (2008). Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/13519 10.32657/10356/13519 en 218 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Manufacturing |
spellingShingle |
DRNTU::Engineering::Manufacturing Dixit, Pradeep Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
description |
In recent years, through-wafer interconnects have emerged as a critical component required in the fabrication of the next generation of 3-D consumer electronic devices, which will have faster signal processing speed, ultra high I/Os density, smaller foot-print area, improved electrical and thermo-mechanical performance, system level reliability, and many more functionalities than their present ones. Fabrication of 3-D devices utilizes the concept of vertically stacking, wherein specific components like logic, memory, sensors, actuators, A/D converters, etc., are fabricated on separate wafers and then interconnected onto a single wafer-scaled package by through-wafer interconnects. Since, these devices are vertically interconnected, the effective interconnect path is relatively shorter; thus electrical signal takes lesser time in traveling from the bottom device to the top ones. This faster electrical signal propagation results in lower parasitic losses (RC delay), reduced power consumption, higher I/Os density, and improved system performance. |
author2 |
Miao Jianmin |
author_facet |
Miao Jianmin Dixit, Pradeep |
format |
Theses and Dissertations |
author |
Dixit, Pradeep |
author_sort |
Dixit, Pradeep |
title |
Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
title_short |
Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
title_full |
Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
title_fullStr |
Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
title_full_unstemmed |
Fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
title_sort |
fabrication & characterization of high aspect ratio fine pitch deep reactive ion etched through-wafer electroplated copper interconnects |
publishDate |
2008 |
url |
https://hdl.handle.net/10356/13519 |
_version_ |
1761781730123972608 |