A layer-wise theoretical framework for deep learning of convolutional neural networks
As research attention in deep learning has been focusing on pushing empirical results to a higher peak, remarkable progress has been made in the performance race of machine learning applications in the past years. Yet deep learning based on artificial neural networks still remains difficult to under...
محفوظ في:
المؤلفون الرئيسيون: | Nguyen, Huu-Thiet, Li, Sitan, Cheah, Chien Chern |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/155225 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
A theoretical framework for end-to-end learning of deep neural networks with applications to robotics
بواسطة: Li, Sitan, وآخرون
منشور في: (2023) -
An analytic layer-wise deep learning framework with applications to robotics
بواسطة: Nguyen, Huu-Thiet, وآخرون
منشور في: (2022) -
Deep-learning-based automated building construction progress monitoring for prefabricated prefinished volumetric construction
بواسطة: Chua, Wei Png, وآخرون
منشور في: (2025) -
D-pruner: Filter-based pruning method for deep convolutional neural network
بواسطة: HUYNH, Nguyen Loc, وآخرون
منشور في: (2018) -
D-pruner: Filter-based pruning method for deep convolutional neural network
بواسطة: HUYNH, Nguyen Loc, وآخرون
منشور في: (2018)