Vibration and thermal cycling effects on solder joint reliability
This report describes vibration and thermal cycling effects on solder joint reliability, especially its relationship concerning the life prediction of solder joints. It highlights critical parameters needed to support a better understanding of solder joint reliability arising from failure mechanisms...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/60912 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-60912 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-609122023-03-04T19:00:13Z Vibration and thermal cycling effects on solder joint reliability Selvanathen, Daryl Pang Hock Lye, John School of Mechanical and Aerospace Engineering DRNTU::Engineering::Mechanical engineering This report describes vibration and thermal cycling effects on solder joint reliability, especially its relationship concerning the life prediction of solder joints. It highlights critical parameters needed to support a better understanding of solder joint reliability arising from failure mechanisms due to high temperatures, vibration, shock, thermal cycling or a combined variety of them. The literature review includes the necessary foundational knowledge in this subject matter where the estimation of fatigue life, evaluation of random vibration and thermal cycling failures are reviewed. Furthermore, several sample problems were included to aid in understanding. Fatigue life prediction methods such as Linear Damage Superposition Approach (LDSA), Incremental Damage Superposition Approach (IDSA) and Rapid Life Prediction Approach (RLPA) were reviewed and their outcomes discussed. Non-linear cumulative damage summation was also explored. Lastly, a conclusion was drawn when the above-mentioned lifetime models were pitted against one another. Their results were compared and scrutinised. It highlighted the proclivity of LDSA to overestimate fatigue life while IDSA had the best life prediction amongst the models. However, parameters like interaction factors, coefficients and exponents can affect precise life predictions if relationships between them with materials, vibration and temperature are not thoroughly understood. Bachelor of Engineering (Mechanical Engineering) 2014-06-02T08:57:45Z 2014-06-02T08:57:45Z 2014 2014 Final Year Project (FYP) http://hdl.handle.net/10356/60912 en Nanyang Technological University 95 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Mechanical engineering |
spellingShingle |
DRNTU::Engineering::Mechanical engineering Selvanathen, Daryl Vibration and thermal cycling effects on solder joint reliability |
description |
This report describes vibration and thermal cycling effects on solder joint reliability, especially its relationship concerning the life prediction of solder joints. It highlights critical parameters needed to support a better understanding of solder joint reliability arising from failure mechanisms due to high temperatures, vibration, shock, thermal cycling or a combined variety of them. The literature review includes the necessary foundational knowledge in this subject matter where the estimation of fatigue life, evaluation of random vibration and thermal cycling failures are reviewed. Furthermore, several sample problems were included to aid in understanding.
Fatigue life prediction methods such as Linear Damage Superposition Approach (LDSA), Incremental Damage Superposition Approach (IDSA) and Rapid Life Prediction Approach (RLPA) were reviewed and their outcomes discussed. Non-linear cumulative damage summation was also explored.
Lastly, a conclusion was drawn when the above-mentioned lifetime models were pitted against one another. Their results were compared and scrutinised. It highlighted the proclivity of LDSA to overestimate fatigue life while IDSA had the best life prediction amongst the models. However, parameters like interaction factors, coefficients and exponents can affect precise life predictions if relationships between them with materials, vibration and temperature are not thoroughly understood. |
author2 |
Pang Hock Lye, John |
author_facet |
Pang Hock Lye, John Selvanathen, Daryl |
format |
Final Year Project |
author |
Selvanathen, Daryl |
author_sort |
Selvanathen, Daryl |
title |
Vibration and thermal cycling effects on solder joint reliability |
title_short |
Vibration and thermal cycling effects on solder joint reliability |
title_full |
Vibration and thermal cycling effects on solder joint reliability |
title_fullStr |
Vibration and thermal cycling effects on solder joint reliability |
title_full_unstemmed |
Vibration and thermal cycling effects on solder joint reliability |
title_sort |
vibration and thermal cycling effects on solder joint reliability |
publishDate |
2014 |
url |
http://hdl.handle.net/10356/60912 |
_version_ |
1759857598512758784 |