A mini-max robust estimation fusion in distributed multi-sensor target tracking systems
This paper proposed a mini-max fusion strategy in distributed multi-sensor system, which aims to minimize the worst-case squared estimation error when the cross-covariances between local sensors are unknown. The resulted estimation fusion is called as the Chebyshev fusion estimation (CFE) which is a...
Saved in:
主要作者: | Qu, Xiaomei |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/97810 http://hdl.handle.net/10220/12136 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Location tracking using multi-sensor fusion and machine learning techniques
由: Tan, Wei Sheng
出版: (2020) -
Sensor fusion and tracking for automated driving
由: Li, Ye
出版: (2020) -
Multi sensor fusion for precious indoor location tracking using Android and machine learning
由: Liu, Wei
出版: (2022) -
Multi-sensor fusion based state estimation for UAV
由: Tan, Edwin Yu Jie
出版: (2020) -
Multi-modality fusion in multiple object tracking
由: Liao, Ruosen
出版: (2024)