Design of a hysteresis frequency lock detector for dual-loops clock and data recovery circuit

In dual-loops clock and data recovery (CDR) circuit design, lock detector is crucial in controlling the switching within CDR loop. The setting of the frequency accuracy of lock detector is a tough task as large ppm will leads to a longer lock time for phase tracking loop and small ppm will lead...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Tan, Yung Sern, Yeo, Kiat Seng, Boon, Chirn Chye, Do, Manh Anh
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/99816
http://hdl.handle.net/10220/17712
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In dual-loops clock and data recovery (CDR) circuit design, lock detector is crucial in controlling the switching within CDR loop. The setting of the frequency accuracy of lock detector is a tough task as large ppm will leads to a longer lock time for phase tracking loop and small ppm will leads to more switching time between the loops. A novel lock detector with hysteresis property is proposed in this paper. It provides two different ppms in both different conditions; a smaller ppm for in-lock condition and a larger ppm for out-of-lock condition. This paper also provides a detailed analysis of the proposed lock detector at different conditions. The proposed lock detector is simulated in 0.18- um technology and it consumes 1.1-mW at a 1.8V supply voltage.