Infrastructure-free global localization in repetitive environments : an overview

Repetitive environment is a challenging scenario for mobile robot global localization due to its highly similar structures and lack of distinctive features. Existing solutions in such environments rely heavily on pre-installed infrastructures, which are neither flexible nor cost-effective. Besides,...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Zhenyu, Zhang, Jun, Yue, Yufeng, Wen, Mingxing, Jiang, Zichen, Zhang, Haoyuan, Wang, Danwei
Other Authors: School of Electrical and Electronic Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146134
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Repetitive environment is a challenging scenario for mobile robot global localization due to its highly similar structures and lack of distinctive features. Existing solutions in such environments rely heavily on pre-installed infrastructures, which are neither flexible nor cost-effective. Besides, few of the previous research have been focused on the implementation of infrastructure-free localization approaches in repetitive scenarios. Thus, this paper serves as a survey to investigate the problem of infrastructure-free mobile robot global localization with low-cost and efficient sensors in repetitive environments. Three of the most popular infrastructure-free localization methods, namely LiDAR-based localization (LBL), vision-based localization (VBL), and magnetic field-based localization (MFL), are analyzed and evaluated. Extensive global localization experiments are conducted in real-world repetitive scenarios and the results demonstrate that VBL methods perform slightly better than LBL and MFL methods. The overall evaluations indicate that infrastructure-free global localization in repetitive environment is still a challenging problem which deserves more research efforts to develop new solutions.