Accelerating sparse matrix operations on FPGAs with on/off-chip memories
Sparse matrix operations on FPGAs have gained much attention. Since sparse matrix operations are memory-bounded, the hardware efficiency depends on hardware-aware data organization and dedicated hardware design. On the one side, sparse matrices are stored in the off-chip DDR and are transferred to t...
Saved in:
主要作者: | Li, Shiqing |
---|---|
其他作者: | Weichen Liu |
格式: | Thesis-Doctor of Philosophy |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/172513 https://doi.org/10.21979/N9/ATEYFB https://doi.org/10.21979/N9/EXZ0Y3 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
An efficient gustavson-based sparse matrix-matrix multiplication accelerator on embedded FPGAs
由: Li, Shiqing, et al.
出版: (2023) -
An efficient sparse LSTM accelerator on embedded FPGAs with bandwidth-oriented pruning
由: Li, Shiqing, et al.
出版: (2023) -
Optimized data reuse via reordering for sparse matrix-vector multiplication on FPGAs
由: Li, Shiqing, et al.
出版: (2022) -
Parallelizing Sparse Matrix Solve for SPICE Circuit Simulation using FPGAs
由: Kapre, Nachiket, et al.
出版: (2015) -
Accelerating gustavson-based SpMM on embedded FPGAs with element-wise parallelism and access pattern-aware caches
由: Li, Shiqing, et al.
出版: (2023)