Positive bias-induced Vth instability in graphene field effect transistors

In this letter, we report positive bias-induced Vth instability in single and multilayer graphene field effect transistors (GFETs) with back-gate SiO2 dielectric. The ΔVth of GFETs increases as stressing time and voltage increases, and tends to saturate after long stressing time. In the meanwhile, i...

全面介紹

Saved in:
書目詳細資料
Main Authors: Liu, W. J., Fang, Z., Wang, Z. R., Wang, F., Wu, L., Zhang, J. F., Wei, J., Zhu, H. L., Sun, Xiaowei, Tran, Xuan Anh, Ng, Geok Ing, Yu, Hongyu
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2013
主題:
在線閱讀:https://hdl.handle.net/10356/98513
http://hdl.handle.net/10220/11342
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this letter, we report positive bias-induced Vth instability in single and multilayer graphene field effect transistors (GFETs) with back-gate SiO2 dielectric. The ΔVth of GFETs increases as stressing time and voltage increases, and tends to saturate after long stressing time. In the meanwhile, it does not show much dependence on gate length, width, and the number of graphene layers. The 1/f noise measurement indicates no newly generated traps in SiO2/graphene interface caused by positive bias stressing. Mobility is seen to degrade with temperature in- creasing. The degradation is believed to be caused by the trapped electrons in bulk SiO2 or SiO2/graphene interface and trap generation in bulk SiO2.