Unsupervised domain adaptation for depth completion from sparse LiDAR scans depth map
Depth completion aims to predict the distance between objects on an image and the camera capturing the image from a LiDAR scans depth input, and the distance is expressed as a dense depth map. Denser scans depth input leads to better prediction, while the cost of the corresponding LiDAR equipment wi...
Saved in:
主要作者: | Geng, Yue |
---|---|
其他作者: | Wang Dan Wei |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156769 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Unsupervised domain adaptation for LiDAR segmentation
由: Kong, Lingdong
出版: (2022) -
Beam steering exploration for LiDAR
由: Ji, Yuequn
出版: (2023) -
LiDAR relocalization on edge devices
由: Lim, Christopher Jia Yao
出版: (2021) -
OOD detection for 1D LiDAR scans
由: Mishra, Pradyumn
出版: (2024) -
DeLiDAR: Decoupling LiDARs for pervasive spatial computing
由: KANATTA GAMAGE RAMESH DARSHANA RATHNAYAKE,, et al.
出版: (2024)