SectionKey: 3-D semantic point cloud descriptor for place recognition in large-scale environments
Place recognition is seen as a crucial factor to correct cumulative errors in Simultaneous Localization and Mapping (SLAM) applications. Most existing place recognition studies focus on vision-based approaches, which are sensitive to environmental changes such as illumination, weather, and season...
Saved in:
主要作者: | Jin, Shutong |
---|---|
其他作者: | Wang Dan Wei |
格式: | Thesis-Master by Coursework |
語言: | English |
出版: |
Nanyang Technological University
2022
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/156767 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Place recognition for unmanned vehicle based on 3D LiDAR and semantic point cloud
由: Zhao, Yangyang
出版: (2024) -
Learning descriptors for sequence-based hierarchical place recognition
由: Lan, Xin
出版: (2022) -
Place detection through analysis of descriptor sequences of 3D point clouds
由: Mihankhah, Ehsan
出版: (2018) -
4D point cloud semantic segmentation
由: Shi, Hanyu
出版: (2023) -
MPT-Net: mask point transformer network for large scale point cloud semantic segmentation
由: Tang, Zhe Jun, et al.
出版: (2023)