Transferable deep reinforcement learning framework for autonomous vehicles with joint radar-data communications
Autonomous Vehicles (AVs) are required to operate safely and efficiently in dynamic environments. For this, the AVs equipped with Joint Radar-Communications (JRC) functions can enhance the driving safety by utilizing both radar detection and data communication functions. However, optimizing the perf...
محفوظ في:
المؤلفون الرئيسيون: | Nguyen, Quang Hieu, Dinh, Thai Hoang, Niyato, Dusit, Wang, Ping, Kim, Dong In, Yuen, Chau |
---|---|
مؤلفون آخرون: | School of Computer Science and Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2023
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/164292 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Toward trustworthy decision-making for autonomous vehicles: a robust reinforcement learning approach with safety guarantees
بواسطة: He, Xiangkun, وآخرون
منشور في: (2024) -
Deep reinforcement learning for autonomous cyber operation
بواسطة: Yong, Hou Zhong
منشور في: (2024) -
DEEP REINFORCEMENT LEARNING FOR SOLVING VEHICLE ROUTING PROBLEMS
بواسطة: LI JINGWEN
منشور في: (2022) -
Public acceptance of autonomous vehicles: examining the joint influence of perceived vehicle performance and intelligent in-vehicle interaction quality
بواسطة: Koh, Le Yi, وآخرون
منشور في: (2024) -
Deep reinforcement learning for time allocation and directional transmission in joint radar-communication
بواسطة: Lee, Joash, وآخرون
منشور في: (2022)