Toward safe and smart mobility : energy-aware deep learning for driving behavior analysis and prediction of connected vehicles
Connected automated driving technologies have shown tremendous improvement in recent years. However, it is still not clear how driving behaviors and energy consumption correlate with each other and to what extent these factors related to connected vehicles can influence the motion prediction performa...
محفوظ في:
المؤلفون الرئيسيون: | Xing, Yang, Lv, Chen, Mo, Xiaoyu, Hu, Zhongxu, Huang, Chao, Hang, Peng |
---|---|
مؤلفون آخرون: | School of Mechanical and Aerospace Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/147440 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
مواد مشابهة
-
Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction
بواسطة: Mo, Xiaoyu, وآخرون
منشور في: (2024) -
Towards autonomous driving : review and perspectives on configuration and control of four-wheel independent drive/steering electric vehicles
بواسطة: Hang, Peng, وآخرون
منشور في: (2021) -
Modeling the proactive driving behavior of connected vehicles : a cell-based simulation approach
بواسطة: Zhu, Feng, وآخرون
منشور في: (2020) -
Trajectory prediction for autonomous driving using deep learning approach
بواسطة: Zhang, Zihan
منشور في: (2024) -
Interactive prediction and decision-making for autonomous vehicles: online active learning with traffic entropy minimization
بواسطة: Zhang, Yiran, وآخرون
منشور في: (2025)