Deep features based real-time SLAM
This project implements a near real-time stereo SLAM system designed to operate effectively in extreme conditions using Deep Learning methods. It employs a Parallel Tracking-and-Mapping approach, making use of stereo constraints to ensure robust initialization and accurate scale recovery while main...
Saved in:
主要作者: | Syed Ariff Syed Hesham |
---|---|
其他作者: | Wen Changyun |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2023
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/172525 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
ORB-SLAM3-YOLOv3 : a visual SLAM based on deep learning for dynamic environments
由: Chen, Peiyu
出版: (2022) -
Deep learning feature-based visual SLAM
由: Yong, Duan Kai
出版: (2023) -
Visual-inertial SLAM algorithm based on enhanced feature extraction and sensor coupling
由: Zheng, Yumin
出版: (2022) -
Extending Bayesian RFS SLAM to multi-vehicle SLAM
由: Moratuwage, Diluka, et al.
出版: (2013) -
Real time multiple object tracking using deep features and localization information
由: Karunasekera, Hasith, et al.
出版: (2020)